CONSERVATION OF MATTER

RECALL

• There are 2 types of changes in matter:

Physical

• At the end of the change, the substance is still **chemically the same**

Chemical

 At the end of the change, the substance is chemically different

CONSERVATION OF MATTER

- The Law of Conservation of Matter states:
 - <u>Matter is never created nor destroyed;</u> it is only ever rearranged.
- This holds true for **chemical and physical changes**

CONSERVATION OF MATTER

 Matter can change but cannot just disappear or appear out of nowhere In other words, during a chemical reaction, everything you start with you must end up with (but it might look different).

A LITTLE HISTORY

•A long time ago, the ancient Greeks already proposed that the **total amount of matter in the universe is constant**

A LITTLE HISTORY

 The law of conservation of mass/matter though was only officially formulated in the late 18th century by Antoine Lavoisier

Fig. 263. — Lavoisier déterminant la formation de l'eau en faisant éclater des Étincelles électriques au sein d'un mélange de gaz hydrogène et oxygène venant de réservoirs ou Gazomètres placés à droite et à gauche de la figure.

WHY IS IT IMPORTANT?

•This was an immense discovery and helped the scientific world move from **alchemy to modern chemistry**

WHY IS IT IMPORTANT?

And in a more complex way, it helped
Einstein develop the theory of relativity

$\bullet \mathbf{E} = \mathbf{m}\mathbf{c}^2$

WHAT DOES IT MEAN FOR US?

Basically, you need to understand that:

 In a reaction, <u>the end product</u> will have <u>the same mass as the total</u> <u>mass of the reactants</u>

WHAT DOES IT MEAN FOR US?

•Example:

•What would be the mass of chocolate milk produced if I add 30g of Nesquik powder to 280g of milk?

30g + 280g = 310g

DENSITY

• Density is a characteristic property of an object that describes the relationship between the object's mass and volume

• Each particle in the following picture has the same mass and the objects are the same size. Which object is denser?

A B

B is denser because it has more mass for the same volume

• What happens if the objects are not the same size? How would you figure it out?

Would need to calculate mass ÷ volume

•The formula to calculate density is:

mass

 $Density = \frac{1}{volume}$

DENSITY TRIANGLE

•We can represent this equation as a triangle m = mass(g)V = volume (mL or L or cm^3) D = density (g/mL or g/L / or g/cm^3)

DENSITY TRIANGLE

USING THE TRIANGLE

•Calculating **Density**

• Write your formula, starting with what you are looking for:

• Now read your triangle: $D = \frac{m}{V}$

EXAMPLE

•What is the density of a ring that weighs 24g and has a volume of $12cm^3$?

USING THE TRIANGLE

•Calculating Mass

• Write your formula, starting with what you are looking for:

m =

• Now read your triangle: m = DxV

EXAMPLE

•What is the mass of 120mL of water if the density is 1g/mL? $m = DxV = \frac{1g}{mL} \times 120mL$

= 120g

USING THE TRIANGLE

Calculating Volume

• Write your formula starting with what you are looking for:

• Now read your triangle: $V = \frac{m}{D}$

EXAMPLE

•What is the volume of a 250g cube if the density is $9.08 \text{g}/cm^3$? 250*g* m9.08*g*/*cm*³ $= 27.53 cm^{3}$

DENSITY SUMMARY

Density	of Water =	$1g/ml^{}$
------------	------------	---------------

	Regular	Irregular	Liquid	Unit
Mass	weigh	weigh	Liquid	g
			mass	
Volume	Lxwxh	Water	Measure	mL or
		displacement	grad. cyl.	cm ³
Density	<u>Weight</u>	<u>Weight</u>	Liq. Mass	g/mL or
	Lxwxh	Water dis.	Vol. G.C.	g/cm ³