CONSERVATION OF MATTER

RECALL

- There are 2 types of changes in matter:
- Physical
- At the end of the change, the substance is still chemically the same
- Chemical
- At the end of the change, the substance is chemically different

CONSERVATION OF MATTER

-The Law of Conservation of Matter states:

- Matter is never created nor destroyed; it is only ever rearranged.
- This holds true for chemical and physical changes

CONSERVATION OF MATTER

- Matter can change but cannot just disappear or appear out of nowhere
- In other words, during a chemical reaction, everything you start with you must end up with (but it might look different).

A LITTLE HISTORY

-A long time ago, the ancient Greeks already proposed that the total amount of matter in the universe is constant

A LITTLE HISTORY

-The law of conservation of mass/matter though was only officially formulated in the late $18^{\text {th }}$ century by Antoine Lavoisier

WHY IS IT IMPORTANT?

- This was an immense discovery and helped the scientific world move from alchemy to modern chemistry

WHY IS IT IMPORTANT?

-And in a more complex way, it helped Einstein develop the theory of relativity

- $\mathbf{E}=\mathbf{m c}^{2}$

WHAT DOES IT MEAN FOR US?

Basically, you need to understand that: - In a reaction, the end product will have the same mass as the total mass of the reactants

WHAT DOES IT MEAN FOR US?

Example:
-What would be the mass of chocolate milk produced if I add 30 g of Nesquik powder to 280 g of milk?

$$
30 g+280 g=310 g
$$

DENSITY

WHAT IS DENSITY?

- Density is a characteristic property of an object that describes the relationship between the object's mass and volume

WHAT IS DENSITY?

- Each particle in the following picture has the same mass and the objects are the same size. Which object is denser?

B is denser because it has more mass for the same volume

WHAT IS DENSITY?

- What happens if the objects are not the same size? How would you figure it out?

Would need to calculate mass \div volume

WHAT IS DENSITY?

-The formula to calculate

 density is:mass
Density =
volume

DENSITY TRIANGLE

-We can represent this equation as a triangle $\mathrm{m}=\mathrm{mass}$ (g)
$V=$ volume $\left(m L\right.$ or L or $\left.\mathrm{cm}^{3}\right)$ $D=$ density (g / mL or g / L or $\mathrm{g} / \mathrm{cm}^{3}$)

D

DENSITY TRIANGLE

This line represents a multiplication

USING THE TRIANGLE

Calculating Density

- Write your formula, starting with what you are looking for:

$$
D=
$$

- Now read your triangle:

$$
D=\frac{m}{V}
$$

EXAMPLE

-What is the density of a ring that weighs 24 g and has a volume of $12 \mathrm{~cm}^{3}$?

$$
D=\frac{m}{V}=\frac{24 \mathrm{~g}}{12 \mathrm{~cm}^{3}}=2 \mathrm{~g} / \mathrm{cm}^{3}
$$

USING THE TRIANGLE

Calculating Mass

- Write your formula, starting with what you are looking for:

$$
\mathrm{m}=
$$

- Now read your triangle:

$$
m=D x V
$$

EXAMPLE

-What is the mass of 120 mL of water if the density is $1 \mathrm{~g} / \mathrm{mL}$?

$$
\begin{aligned}
m=D x V & =\frac{1 g}{m L} \times 120 m L \\
& =120 g
\end{aligned}
$$

USING THE TRIANGLE

Calculating Volume

- Write your formula starting with what you are looking for:

$$
V=
$$

- Now read your triangle:

$$
\mathrm{V}=\frac{m}{D}
$$

EXAMPLE

- What is the volume of a 250 g cube if the density is $9.08 \mathrm{~g} / \mathrm{cm}^{3}$?

$$
\begin{aligned}
& \frac{250 \mathrm{~g}}{9.08 \mathrm{~g} / \mathrm{cm}^{3}} \\
& \quad=27.53 \mathrm{~cm}^{3}
\end{aligned}
$$

DENSITY SUMMARY

***Density of Water $=1 \mathrm{~g} /\left.\mathrm{m}\right|^{* * *}$

	Regular	Irregular	Liquid	Unit
Mass	weigh	weigh	Liquid mass	g
Volume	L x w x h	Water displacement	Measure grad. cyl.	mL or cm^{3}
Density	$\underline{\text { Weight }}$	Weight Lxw $\times \mathrm{h}$	Wiq. Mass Gater dis.	mL or $\mathrm{g} / \mathrm{cm}^{3}$

