1.3 VOLUNE

$$
\begin{aligned}
& \text { WHEN WE TALK ABOUT } \\
& \text { THE VOLUME OF AN } \\
& \text { OBJECT, WHAT IS THAT? }
\end{aligned}
$$

VOLUME

-The amount of space an object takes up
-This is a three-dimensional measurement

MEASURING VOLUNE
-The basic unit of measurement for volume is going to depend if the substance is a solid or liquid/gas
-For solids:
-We usually use $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ or m^{3}
-For liquids and gases: -We usually use mL or L

CUBIC MILLIMETRE (mm^{3})

-This is used for very small solid objects -If you would measure the sides of the object in mm then it will probably have a volume in mm^{3}

CUBIC CENTIMETRE(cm^{3})

-This is used for small to medium sized solid objects
-If you would measure the length of one of their sides with a 30 cm ruler then it'll probably have a volume in cm ${ }^{3}$

CUBIC METRE $\left(\mathrm{m}^{3}\right)$

-This is used for large solid objects.

MILLILITRE (mL)

-This is used for smaller quantities of liquid or gas

LITRE (L)

-This is used for larger quantities of

 liquid or gas

HOW DO WE MEASURE VOLUME?
 It depends...

MEASURING THE VOLUME OF LLQUIDS

-Pour the liquid into a graduated cylinder
-Determine the size of each division on the cylinder
-Is it l mL? 2 mL ?
-Read the level of liquid by looking at the meniscus at eye level

MEASURING THE VOLUME OF SOLIDS

\qquad

MEASURING THE VOLUME OF REGULAR SOLIDS

-Measure the length, width and height

$$
\mathrm{V}=\mathrm{lxwxh}
$$

What is the volume?
$\mathrm{V}=\mathrm{l} \times \mathrm{wxh}$
$\mathrm{V}=10 \times 5 \times 6$
$\mathrm{~V}=300 \mathrm{~cm}^{3}$

MEASURING THE VOLUME OF IRREGULAR SOLIDS

-Use water displacement -For smaller objects: we use a graduated cylinder

- For larger objects: we use an overflow can and graduated cylinder

1 mL of water $=1 \mathrm{~cm}^{3}$

- 1) Fill a graduated cylinder with enough water to cover your object
-2) Record the volume. 4.0 mL -3) Carefully drop the object into the water

4) Record new volume 6.0 mL -5) Calculate the difference

$$
\begin{aligned}
6.0 \mathrm{~mL}-4.0 \mathrm{~mL}= & 2 \mathrm{~mL} \\
& 2 \mathrm{~mL} \rightarrow 2 \mathrm{~cm}^{3}
\end{aligned}
$$

MEASURING VOLUME USING $\mathbb{A N}$ OVERFLOW CAN

manami
ADVANCED PHYSICS ${ }^{1}$
THROUGH INQUIRY ${ }_{\text {ps } 2848}$

USING AN OVERFLOW CAN

-1) Place the spout of the overflow can over a beaker or graduated cylinder -2) Fill an overflow can until water pours out the spout
-3) Pour out the water collected and replace beaker/graduate cylinder -4) Lower object into the overflow can and collect the water in the graduated cylinder. Record volume.

WORKBOOK

p. 26-27

