



THE VOLUME OF AN

OBJECT, WHAT IS THAT?





# The amount of space an object takes up This is a three-dimensional measurement





# MEASURING VOLUME

 The basic unit of measurement for volume is going to depend if the substance is a solid or liquid/gas

#### •For solids:

•We usually use mm<sup>3</sup>, cm<sup>3</sup> or m<sup>3</sup>

# For liquids and gases: We usually use mL or L



# CUBIC MILLIMETRE (mm<sup>3</sup>)

This is used for very small solid objects
 If you would measure the sides of the object in mm then it will probably have a volume in mm<sup>3</sup>





# CUBIC CENTIMETRE (cm<sup>3</sup>)

 This is used for small to medium sized solid
 objects

• If you would measure the length of one of their sides with a 30cm ruler then it'll probably have a volume in cm<sup>3</sup>





# CUBIC METRE $(m^3)$

#### This is used for large solid objects.





# MILLIUTRF (mL)

#### This is used for smaller quantities of liquid or gas









# This is used for larger quantities of liquid or gas









# VOLUME?

It depends...



## MEASURING VOLUME OF LIQUIDS



### **Volume of Liquids**

# MEASURING THE VOLUME OF LIQUIDS

Pour the liquid into a graduated cylinder

- Determine the size of each division on the cylinder
  - •Is it 1 mL? 2 mL?
- Read the level of liquid by looking at the meniscus at eye level









#### What is the volume of this liquid?

# 83 mL



#### MEASURING THE VOLUME OF SOLIDS

# MEASURING THE VOLUME OF REGULAR SOLIDS

# •Measure the length, width and height $V = l \ge w \ge h$



What is the volume?  $V = 1 \times w \times h$   $V = 10 \times 5 \times 6$  $V = 300 \text{ cm}^3$ 



# MEASURING THE VOLUME OF IRREGULAR SOLIDS

# Use water displacement For smaller objects: we use a graduated cylinder

 For larger objects: we use an overflow can and graduated cylinder



#### $1 \text{ mL of water} = 1 \text{ cm}^3$

- I) Fill a graduated cylinder with enough water to cover your object
- 2) Record the volume. 4.0 mL
- 3) Carefully drop the object into the water
- •4) Record new volume 6.0 mL
- •5) Calculate the difference

6.0 mL - 4.0 mL = 2 mL $2 \text{ mL} \rightarrow 2 \text{ cm}^3$ 





#### MEASURING VOLUME USING AN OVERFLOW CAN



#### ADVANCED PHYSICS<sup>1</sup> THROUGH INQUIRY PS-2848







## USING AN OVERFLOW CAN

- 1) Place the spout of the overflow can over a beaker or graduated cylinder
  2) Fill an overflow can until water pours out the spout
- 3) Pour out the water collected and replace beaker/graduate cylinder
- 4) Lower object into the overflow can and collect the water in the graduated cylinder. Record volume.



# WORKBOOK

# p. 26-27

