> 1.1 STATES OF MATTER

MATTER

-Anything that has: -Mass (no matter how small) -Volume (takes up space)

MATTER

-Matter is made up of tiny particles (atoms and molecules) that are so small they are invisible to us
-Even most microscopes are not strong enough to see them

-Can only be seen with an electron microscope

WHAT IRE THE STATES (PHASES) OF MATTER?

 Solid, liquid and gas!

 Solid, liquid and gas!}

And plasma...

STATES OF MATTER
-The states of matter are the different ways that particles are organized: -Solid -Liquid -Gas
-Plasma
SOLID
(although we won't discuss this)

STATES OF MATTER

Solids

solid

Have a definite (specific) shape and volume.
-Atoms are held together by strong bonds

Solid

Strong bonds

fixed shape
fixed volume

STATES OF MATTER

Liquid

Liquids:

Weak bonds
no definite shape, but has a definite volume
-Atoms spread out to fit the shape of the container
-Atoms are held by wealk bonds

not rigid no fixed shape fixed volume

STATES OF MATTER

Gas

no bonds

not rigid
no fixed shape
no fixed volume

Solid
-Neatly arranged -Strong forces of attraction between particles (physical bonds)
-No real movement of particles

Liquid
-Close together but not as structured as a solid -Weak forces of attraction between particles
-Particles can slide over each other

Gas
-Far apart -No forces of attraction between particles -Move a lot!

PHASE CHANGES

-Substances in the different states of matter can change state by either adding energy (heat) or removing energy (heat)
The more energy atoms have, the faster they move!

States of Matter

Red arrows: adding energy/heat
Blue arrows: removing energy/heat

TOPIC 3: PHASE CHANGES

Gas

Solid

-
-When you heat up a substance (or cool it down), you will see that when the substance is at the point that it is changing from one state to the other, the temperature will stay steady for a while
-We call this a plateau
-At this point the energy is being used to break apart the physical bonds instead of increasing the temperature (agitation of the particles)
https://interactives.ck12.org/simulations/chemi stry/phases-of-
matter/app/index.html?screen=sandbox

Time

STATES OF MATTER

(1) Ice stays in a solid state until its temperature reaches $0^{\circ} \mathrm{C}$.
(2) At $0^{\circ} \mathrm{C}$, the temperature of water stays stable for a certain amount of time. The curve shows a plateau at the melting point. The substance is both solid and liquid.
(3) When all the water has turned liquid, its temperature starts to climb again.

STATES OF MATTER

A substance's melting point is the temperature at which it goes from a solid state to a liquid state or vice versa. A substance's boiling point is the temperature at which it goes from a liquid state to a gaseous state or vice versa.
B. Diagram of water freezing

